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ABSTRACT

In this paper we are interested in studying multiple de-
cision procedure for k(k 2 2) populations which are themselves
unknown but which one assumed to belong to a restricted family.
We propose to study a selection procedure for distributions
associated with these populations which are convex-ordered with
respect to a specified distribution G assuming there exists

a best one. The procedure described here is based on a statistic

T. = ¥ a, X, for i=1,...,k where xi'j 5 is the j-th

’

order statistic from Fi' r is a fixed positive integer
=L(3=hN - se~t (A £
(1l < r < n), ajng (n) gG (n) for j 1o oaX=L

a = gG-l (%) and g is the density of G . This statistic

Ti was considered by Barlow and Doksum (1972). If G(x) =

l - e-x for ¥ >0, then nT, =X * cos * X, +
1 i,’l.n lfr-lcn

(n -r+ 1) xi-r 5 is the total life statistic until r-th
failure from Fi . This shows that the procedure based on 'ri
generalizes Patel's result (1976) for the IFR family.

The infimum of the probability of a correct selection is

obtained and the asymptotic expression is also obtained using




the subset selection approach. Some other properties of this

procedure are discussed. We also study the asymptotic relative
efficiencies of this rule with respect to some selection proce-
dures proposed by Barlow and Gupta (1969) for the star-shaped
ordered distributions, Gupta (1963) for the gamma populations
with unknown shape parameters and etc. An example is given to

illustrate the use of the selection procedure for the two inde-

pendent uniform distributions. Application to quantile selection
rules for distributions convex ordered with respect to Weibull
distribution is given. A selection procedure for selecting the

best population using the indifference zone approach is also

studied.
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SUBSET SELECTION PROCEDURES FOR RESTRICTED
FAMILIES OF PROBABILITY DISTRIBUTIONS

§ Introduction
In many problems, especially those in reliability theory,
one is interested in using a model for life length distribution

which is not completely specified but belongs, for example, to

" a family of distributions having increasing failure rate (IFR),

or increasing failure rate on the average (IFRA). Such
distributions form special cases of what are now commonly
known as restricted families of probability distributions.
The idea of using such families stems from the fact that in
many cases the experimenter cannot specify the model
(distribution) exactly but is able to say whether it comes
from a family of distributions such as IFR, IFRA. Fa&ilies
of probability distributions of these types have been
studied by several authors, see, for example, Barlow, Marshall
and Proschan [4], Barlow and Proschan [5,6] and Barlow and
Doksum [ 1] .

In this paper we are interested in studying multiple
decision procedures for k (k>2) populations which are
themselves unknown but which are assumed to belong to a

restricted family. We now give some definitions of interest

to us (see Barlow and Gupta [31).
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(i) F is said to be convex with respect to G
(written F « G) if and only if G-IF(x) is
c
convex on the support of F .

(ii) F 1is said to be star-shaped with respect to G

(written F < G) if and only if F(0) =G(0) =0

-1
and G—%"& is increasing in x>0 on the support
of P ., \
If G(x) =l-e ¥ ., Xx20, then F < G 1is equivalent \\

c
to saying that F has increasing failure rate (IFR). Again N

if G(x) =1 _e-x P o a0 e < G is equivalent to saying 3
that F has increasing failure rate on average (IFRA).
In the statistical literature, selection problems for

restricted families were first investigated by Barlow and

Gupta [3]. Some further results in this direction and a

review of some important results concerning inequalities
for restricted families and problems of inference for such
families have been given by Gupta and Panchapakesan [10,11]
and Patel [157.
In Section 2, we propose and study a subset selection rule for

<  ordered with respect to a specified

distributions which are
’ distribution G assuming there exists a best one. Some
properties of this rule are discussed. The infimum of the

probabili ty of a correct selection is obtained and an




asymptotic expression is also given. We also study the

asymptotic relative efficiencies of this rule with respect

to some selection procedures. Section 3 deals with selecting
the best population using the indifference zone approach. 1In
Section 4, we propose a selection procedure for distributions

that are <, ordered with respect to G .

2. Selection rules for distributions o ® ordered with respect
to a specified distribution G .
Before discussing the selection problem, we give some
preliminary known results for sake of completeness. Let (
be the class of absolutely continuous distribution functions
G on R with positive and right-(or left-) continuous density
g on the interval where 0<G<1l and let JF be the class of
distribution functions F in G such that F(0) = 0 . For
G€G , we take G-l(o) and G-l(l) to be equal to the left
hand and right hand endpoints of the supportof G. For F €7F ,
we define F-l(O) = 0. For FE€F and G €G , consider the

following transformation (see Barlow and Doksum [1] )

-1
IF (t)g[G-lF(u)]du , Ostsl ,

-1
(2.1) Hp, (t) =
0]
where g denotes the density of G .

We assume that G is always fixed. Since H;I (the inverse

of Hp) is strictly increasing on (o,13 , HF is a

—



distribution. Barlow and Doksum [1l] have shown that

F< G if and only if H_ is convex on the interval where

e F
°<Hr<1 -

Since G is assumed known we can estimate B;l by substituting

the empirical distribution Pn of F ; that is
-1

-1 -1 Fn (t) 1
(2.2) H “(t) =H 7 (t) = [ gfG "F _(u))du
n 0
and
-1l,r xr n -1 L -1 i-1
(2.3) H () = j'o ofG " F _(u)ldus= : ote “(TMNx, L -x, . )
where xi & is the i-th order statistic in a sample of size
n from F and xo n-o . If G(x) =l-e > for x20 , then
(2.3) can be written as
(2.4) B lE) =dx  +...4x +(n-r+1)X_ 3
5 n n " "1,n r-1,n R
We say that xl,n+"° +xr-1,n+ (n-r-l*l)xr'n is the total

life statistic until r-th failure from F .

(A) Selection procedure and its properties

Let Myeeees™ be k populations. The random variable
xi associated with m has distribution function |

Fi' i-lp 2' LR ) k ’ Whﬁre Fi 68 (isll e o0y k) . Let

F[k] denote the cumulative distribution function (c.d.f.) of

the "best" population. We assume that (a) F (x) zFCk]

i (x) for
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all x, i=1l, ..., k and (b) there exists a distribution

G such that F <G, i=1, ..., k , vwhere < denotes a

i
partial ordering relation on the space of probability
distributions. We are given a sample of size n from
each L (i=22, «.., k) . Our goal is to select a subset

from the k populations so as to include the population with

F[k] . Let 0 ={F = (Fl,...,Fk) :3 a j such that
Fi(x) sz(x) for all x and i=1, 2, .... k} . Let
P

(2.5) T; =Z ajxi;j,n for 1i=1l, .ss k -

3=1

<
(2.6) T=Za_‘Y. &

f 373
where X, . is the j-th order statistic from F_,Y, is

i1;3.,n i 3J,n

the j-th order statistic from G, r is a fixed positive

integer (1 sr<n) ,

N P L T YR | k- & SR 3 <2 §
aj-gG (n) gG (n) for j l,...,rlandar gG (n)

For selecting a subset containing F[k] , we propose the

selection rule R as follows:

1
Rlz Select population my if and only if
(2.7) Ti 2 ¢, max T,
l<i<k

where ¢, = cl(k.P*,n.r) is the largest number between 0

and 1 which is determined as to satisfy the probability

requirement




(2.8) inf r{cs\nl} > P*
0

where CS stands for a correct selection, i.e., the selection
of any subset which contains the population with distribution
F[k] . Let T(i) be associated with F'L i
be the c.d.f, of T

and let Wi (x)

() -

1’ F2 be two distribution functions such

that Fl(x) ze(x) ¥x and T, =z bjxi:j,n i=1,2, where
J€A
bj>0 for Jecby 8211,2,.4.,0) and xi;j n is the j-th

’

Lemma 2.1. Let F

order statistic from Fi' i=1,2 , then
P[Tl <x] 2 P[T2 £x] .
Proof.

1 if T. =X
i

Let (xil""'xin) 7 {o otherwise

where xil,....xi are n observations from Fi {1 =1,2) &

n

Since (Xil""'xin) is nondecreasing in each of its

arguments, it follows by induction (Lehmann [11] P. 112)

that
E¢ (xil,...,xln) < Ey (x21,...,x2n)

That is P[Tl 2x] s P(T,2>x] . This proves the lemma.
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We now state and prove the following theorem which is more

general than ?ut of Patel [159.

Theorem 2.). If F,€3,0€G, F,(x) 2Fopq(x) vx and 1=1,2,....%,

-1
rrngc.n’:o for 3 1,2,...,x , G "(0) =0,

g 6 10) <1 ana a_zc, , then
(2.9) Mos|R) 2 [ Gr t(E e, (x)
c"1(0) 3

where o,r(x) is the c.d.f. of T .

Proof. PLCS|R,] = P[l'(k) zcl‘r(“ e d=l, ... .k-]Y
o T RS
= { 121' (cl)ak(x)

2 ;r' we -l (3";) o (x) (By Lemma 2.1)

- P[Zk 2 clzj. j'l o eee ..“l]

where 21.... ozk

Let ¢(x) = ¢ ¢

are 1i.i.d. with G.‘.f. %(‘, -
(x) . Note that g(x) 4is nondecreasing in

(x]
X . Also we can write
(2.10) 21 .=t i ajxi'j.u i-too.oct °
i=1
where xz’ 3.0 is the j-th order statistic in a sample of sisze .
. 1
n from P i=l,...0K &

£x) *

(2.11) PLz, 2¢c, 1:;; zj] = Ptv('cll' zk) Y Q“‘) o i=1,...,k-13% .

J




r
Since ‘; a =gG-l(O)¢1. a:i 2 0%¥)=s1,.... , and of0) = 0 .

3
‘21
by Lemgla 4.1 of Barlow and Proschan [57 and (2.10), then

a - R
1Jm(ia.

(2.12) ep(zl)‘g

nMn

l\/]

Since 'i'a =1, L
¢, T

by Lemma 4.3 of Barlow and Proschan (5] and (2.10), we have

r
% i S &
(2.13) @l zk) el | ajca(xk:j'n) .
* =
(2.14) o (X Ped. n) StYJ. ey
where Y. . is the j-th order statistic from G , i=l,2,...,k.

1;J.n

Thus from (2.11), (2.123, (2.13), and (2.14),

2
BLE e, ik o £ ajyk:j.n”’li %5%is4.n *

1 =1

T~

i=1,2,...,k-1]

T
-1(0) 1

-] k X
= [ (c )dG,, (x)
G
This completes the proof.
-1
Remark 2.1. (i) If g 1is nonincreasing,g(0)<gG (0) < 1 and

50, 4% % d s @ T H0) 2 B

gG 1( - 1) 2 ¢ then these conditions a

3

gG- (0) < 1 and a 2% in Theorem 2.1 are satisfied.

k-1
4

(cl)dG (X) if 6 1(0)

]
o

(ii) inf P[CS|R,] = e
0 0

The constant c, = cl(k,P*,n.r) satisfying (2.8) is the

i |
largest number between O and 1 determined by




i
|

Y Uy T Iy v e d

a 3 G]'r{—l(ec‘— )dG, (x) > P* and gG-l(r—;]"') 2c
"G 7 (0) 1

We now consider two specific distributions G(x) .

1 -

If G(x) =1 -e-x , X320 , then we have following result which

slightly generalizes the result of Patel [15].

Corollary 2.1. If Fi(x)zF (x) vYx and i=1,...,k,

(k)
F[k]éG' G(x)=1-e-x, x > 0 and
n > max{r, ;:(1:1} , then
(2.15) Inf P[CS|R ] = I 1 () an (x)
0 o |

where H(x) is the c.d.f. of a Xz random variable with

2r d.£.

Proof. If G(x) & log > then aj=';];' for j=1,2,...,x0~1

and a =L(n-r+1) .
r n

e : r -1
Also c]_ arzl iff nzl_c

1
By Theorem 2.1 and the fact that 2nT is distributed as xz

with 2r d.f., the result follows.
If G(x) = x for O0<x<1 , then we have the following result

which is a special case of Theorem 2.1 of Barlow and Gupta [ 3].

Corollary 2.2. If Fi(x)zF X)) T2 and 1w).. ...k,

Ck]

< G and G(x) = x for O « x <1 , then

Frid 2

. Zmas




10.
| (2.16)

: L
inf P[CS|R, ] = n(;‘:i)j“’ [? (’;)(ci)l(l --c-’—‘-)n : ] 3 = (2ex T ax
Q Q ‘imy 1 i |

Actually, the condition F < G 1in Corollary 2.2 can be

[k] ¢
relaxed to F[k] : G .

We state and prove the following theorem about the asymptotic
evaluations of the probability of a correct selection associated
with the rule R1 in the case where r 1is so chosen that
r < (n+l)a<r+ 1, 0 «<q <1l . This amounts to selecting
populations with large values of the a-quantile for a (and r )

as defined above. In this case, i'-o o as n-+ o . Note

that the result holds for all a .
Theorem 2.2. If FiGEG e GEG for all i=1,...,% and

(i) Fi(x) 2 F (%) ¥ s A= L icark o F < G

k ik]cr #

(ii) G(x) has a differentiable density g in a neighbor-
hood of its qg-quantile Ny g(na) # 0 and G-l(O) < 0 , and
(iii) gG-1 is uniformly continuous on 0,1], ¢ lix) is

convex and there exists an 2 , 0 <& <1 , such that for € <y <1,

-1
and '9%77$21 is nondecreasing in y , then as n-+ o

l-c

o k=1 x
(2.17) PFCSIle P [’ 3 [C ot

1 D%
I e T TG ] aex)

where g =1- g and &(x) is the standard normal c.d.f.

y -1 ;
Proof. Since G " (x) is convex, we have




max 2.7
lej<k ]

(2.18) P[CS\RI] > P[Zk>c

where Zl""'zk are i.i.d. with c.d.f. Wk(x) and wk(x)

is the c.d.f. of T(k) .

By Theorem (2.2) of Barlow and Van 2wet [7] and condition

¢iii),
¥ g )jau- [ ¢t
(2.19) sup| | gl G F{kjn(u ldu - f of F{kj(u)jdu"'o a.s
x20 o0 0
where F[k]n is the empirical distribution of Fth .

Then we have (see Barlow and Doksum fl])rfor n large,

- Z, =Y,
where Y, is the r-th order statistic from H and
i;r,n F[k]
-l (the inverse of H ) is defined in (2.1). Now
F F
(k) . Bl =]
F < Ge H is convex. Since G " (x) is increasing and
convex, it follows that G-lHF (x) is convex. Since
% [ k]
HF < G and G l(0) <0 , then HF < G . In a manner
tx] € [k]) *

similar to the theorem (2.1) of Barlow and Gupta [ 33, we have

* * 1
(2.21) P[ka’nzclma.lx Yi;r,n] EP[Yk:r,nzC'Yi:r,n , 1#Kk]
l<ic<k

where Y;.r - is the r-th order statistic from G, i=1l,...,k .

L i

From (2.18), (2.20), (2.21) and using the fact that

iR ecepiis
(2.22) Y'{;r,n“ N(n , )
ng (“a)

’
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the theorem follows.

Before we discuss some properties of the selection rule

R1 ., we introduce some definitions (See Santner [16]). For a

given a(0 < a < 1) , we assume each Fi has a unique a-quantile.

Let F[i](x) = denote the cumulative distribution function

e
(i)
of the population with i-th smallest a-quantile. Define

Pg(i) = PF[ﬂ

is selected |R] where T(i) is associated with

(i)
Sl

Definition 2.1.

(i) A rule R is strongly monotone in if

(1)

tin F when all other components of F are fixed

[i]
PF(i) is
= in F[j](j¢i) when all other components of F are fixed.

That means, ggl(i) 2 ng(i) when F[i] = Ffi] and Pzz(j) <
st(j) when F[j] 5t Ffj] for j # i , where El = (F[l]""'Ffi]'
ceeiFryq)s EY = (FpyqreeesFEiqreeeiFryy) o By = (Fppqrmees
F[j]""'F[k]) and gg = (F[lj"°°'Ffj]""'F[k]) .

(ii) A rule R is monotone means

?E(i) < Pg(j) for all FeQ with F[i](x) 2 F[j](x) .

(iii) A rule R is unbiased if PF(i) < PF(k) for all

E€o  with Fr oo(x) 2 F,(x) .
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(iv) A rule R is consistent with respect to 0’ means

inf P[CS|R] » 1 as n =+ o .
Q'

Theorem 2.3. If ai 20 for i=1,...,r , then R1 is

strongly monotone in Tei) -

Proof. c

1 if T(i) 2 ¢ max T(j)
Let {(X) = 1si<k

0 otherwise

where 5=(x11,...,xln.x21,...,x2n,...,xk1,...,xkn) .

It is similar to the proof in Lemma 2.1, we can show that R

1
is strongly monotone in m(i) .
Remark 2.2.
(1) If a rule R is strongly monotone in "(i) for all
i=1...,k, then R is monotone and Inf P[CS|R] = Inf P[CS|R)
Q Q
0
where Qg = {F = (Fl'°"'Fk) € Q3 F, = ... = Fk} :

(2) If R is monotone, then it is unbiased.
(3) 1If F4(x) = F(x,ei) o 1= 1,000,k and Ti is a con-

sistent estimator of ei ., then R1 is consistent with respect

to Q= {F = (Fl....,Fk) : 3 aj such that Fi(x) > Fj(x)

for all x and i=1,...,k} .

(4) 1If Fies,c;eq. Fi é G, i=1,...,k and the condition

(iii) of Theorem 2.2 is satisfied, we can show that




R1 is consistent.

f The selection of the population with largest Fi
(i=1,...,k) can be handled analogously. We assume

F,..(x) <F (x) , i=1l,...,k , and P < G . The rule
£i] £1] 5

for selecting the population with Ftl] is R,: Select

population s if and only if

(2.23) c Ti < min T,
1sj<k
where c2(0< cz'sl) is determined so as to satisfy the

basic requirement. 1In a manner similar to the proof of

Theorem 2.1, we have

Theorem 2.4. If F,, Ge¢¥ , F_..(x) <F (x) vx and

i ' fi) [1]

3 i=1l,...,k, F__.(0)=0 and F < G and if a. >0 for
(1 (1] ¢ d
J =L, ceest & G-l(O) <0 , gG-l(O) <1 and ar2c2 , then
(2.24) P[CS|R,] = T G %1 (e x)de_ (x)
' 2 -1 T 2 T
G (0)

where GT(x) = 1-GT(x) .

(B) Efficiency of procedure Rl under slippage confiquration.

Under the same notations and conditions of Theorem 2.2 and
the comments above the Theorem 2.2, we consider slippage con-

figuration F.,.(x) = F(*) b w 1,2,.00,%=1 , and

(i) 5

(x) = F(x) , 0 <8 <1l . Let

Frx)




E(S|R) denote the expected subset size using the rule R .

Then E(S|R) ~P[CS|R] is the expected number of non-best

populations included in the selected subset. For a given

e>0 , let nR(e) be the asymptotic sample size for which

E(S|R) -P(CS|R} =¢ . We define the asymptotic relative

efficiency A R E(R,R*,8) of R relative to R* to be the
nR(e)

limit as ¢=20 of the ratio ———, i.e. ARE (R,R*;§) =
n_,(e)
DR(e) R*

LIS

Under the slippage configuration we have,

(2.25) E(s|R1)==P[cs|R1]-+(k—1)PtT(l) 2c; ?;T T(i)]

If n is large, then from an argument similar to the one

in the proof of Theorem 2.2, we have

. PfT max T,.,] == PlY max Y.
(2.26) (T(1) 217‘){ (1)] Y, 2¢; iy‘f i
where Yl""'Yk are independent and Yi is the r-th order
statistic from HF for i=1,...,k . The right-hand
gl
side of (2.26) is equal to
8
(2.27) fuf-ahm)u-fﬂ4ﬁ).
el 1 a  a 1 oo
k-2 1
2(E _an@) -4 @Has
c a a c ao
1 1
where ¢ is the constant used in defining R1 ’ aa is

the (unique) g-quantile of HF (x) and h(x) is the density

Lk




function of HF (x) . For k=2 and n large,

(k] :
0 P e ~ - _-L ..rl.;f 6__-;5
(2.28) E(S|R,) -I[LS|Rl] > % ( h(aﬂ)aﬂ(l c1)(m;) M1 + =
c
1
© k-l x i 1 0% i}
Let E. % (Cl ¥ 4% clhulq(nn) e, (ua) )de (x) = p*

Now, setting the right aide of (2.28) equal to ¢ and using

5
oL o 1—%52 » where D=3

i
1 = (

p*)(aa)g/hag(nu) , we obtain

%

(2.29) np, (e) = [-(aa) é_l(e)(l-+62)%'+J7 Déa h(a )]2-
1 a a

202 2.-1
(auh (aa)(l ~6)79 .

Comparison with Barlow-Gupta Procedure

Barlow and Gupta [ 37 propose a procedure R3 ., for the

quantile selection problem of star-ordered distributions

which is,

R3: Select population ni if and only if

(2.30) T = max T .

roi : r,j

l<j<
where c, (0<cg 1) is chosen to satisfy P{CS|R,]>P* and
Tr i is the r-th order statistic from Fi where
4
r<(n+1l)a<r+l . They derive an expression for n, (e) as
3

follows:

L -1 2. % . Yo ln 22,2 T A
3 (e)(1+8°)%+./2 Dbgaf(.“)] [°af (ga)(l 8)°Y

n, (¢) ~ [-(aq)
R3




where f is the density of F with unique a~quantile, ¢ .

an(r) ,iEZ(’ )
(2.31) ARE(R,,R_;8) = lim = e |
1 3 €40 nR (") aZhZ(a )
3 a a
x/6

If G(x) =1-e ¥, x>0 and F“](x)=1-e' and

-X
=1- 20, 0< 8< ~
F(Zj(X) l-e , xXx20 1 , we have
2 2
5 T lo 1-
(2.32) ARE(Rl,R3,6) = > < X
n

0.4803 , a=k .

|

i

[ Comparison with Gupta Procedure
M

Gupta [8] gave a selection progedure for gamma populations

{ N s
| n.'s with densities —d 2 N 220, 8.8, 1=].2...::% .
! i rx e i
. I‘(a)ai
f The procedure R, is
? R4: Select population u if and only if

(2.33) ii > c max X,

l<j<k

where Xi is the sample mean of size n from n, and

, is the largest constant (0< c4<<l) chosen so that

P{CS|R,] 2 P* .

For k=2, ¢ =§ and ~a =1 (see Barlow and Gupta [ 39),
r1) 2] St

we have




N

R : - 2
(2.34)  ARE(R,,R,:8) = lim 3( - allog ;l ‘“’“”Jz i
es0 R °° 2(1-8)Te £(7 )]
4 a 0
It is easy to show that
(2.35) ARE (R, ,R,:8) = ARE(R ,R;;8)ARE(R,,R,;8)
f / 22
_ (/a log & Jag J1 +6 }
= { J2 (1-8)a h(a ) i
Q a
If G(x) =1l-e © for x>0 and a=1,
(1 )(1+62)10 26
(2.36) ARE(R),R,16) =~ . 4L
2(1"6) 31
(2.37) ARE(R. R, 1811) = =5
s oy a

Comparison of Rl and R5 from uniform distribution

Suppose nl and n, are two independent uniform populations

with distribution functions Fi (1=1,2) .

0 x-0
(2.38) Fo(x) = ;"— 0<x <o,
1
1 X > 8.
b 8

=1

where § = 9[1’ < QEZJ .

A sample of n independent observations is drawn from each

of the two populations. Let T; be the total life statistic




until r-th failure from my (i=1,2) where r < (ntl)a~r+l .

The procedure R5 is given by

RS: Select population n if and only if
(2.39) T; 2 C max T*
1<j<k
where e is chosen so that P[CS|R5] =P% . Let T?i) be
associated with 8_.. -
(il
' c5
- = * * = sl '
(2.40) E(S\Rs) Prcs|R5] P[T(l)>c5T(2)‘j p['riz " T2]

where Ti, Té are two independent total life statistic until

r-th failure from uniform distribution over (0,1) . By Gupta

and Sobel [12],

T, — U
(2.41) + N(O,1) as h=4e ,
o
= :
where u = g (20 an'+l14: u' = Emigzgl.' 42==An and
2n+ 1 2
3
a ool em? | o
4 o

Hence = ~ Y - B/n where B = al2-0) . From (2.40), we !
bJ o 2/A
have
P =n' e Tl =u’ c
1 5, 2 5 u'
- = s (i — + (— - -
E(S|R, P[CS|R.] g >a( . ) + (5 1)n_]
(o c
5 5 2k
— + —
~ P[ZI.> 5 22 ( 3 1)B./n)




where Zl’ 22 are i.i.d. with N(O,1) .

Hence

E(S|R) ~PLCS|R;] = [T 3= x - (1 -=-)B/h]ds (x)

8 B
-(1-—)B/n
c
(]
= é ”
e
5
Let E(S|R.) - PLCS|R] = ¢ >0 , we obtain
e -1
(2.42) o _.l%/ﬁ . 4LL_+_;L_, 3 (e)
< 8 2 2 B
5 & c
5
Note that

inf P(CS|R_.] = P[T! >c_.T)7 , where T! and T! are defined as above.
) 5 RS e 1 2

Tl _ul T — "
2 u

] &N l _u_.-
P[T} =Tyl = B N ]+(c5—1) —]

~ v ~ + = . . .
~ P2y »c.2, (cg 1)B/n] where Z2,+ 2, are i.i.d. with N(0,1) .

Hence

-(1 —;} )13/n
5
e ). 1 - 1
P(T!>cT!]1=0 3(— x-(1--")B/n)ds(x) =¢ e ‘
ey s [A/1+l2 /
s

Setting inf P[CS{RS]‘=q , we obtain
0 e
~(1-20)B/R = 8 e) o+ 5

5 ‘ g

/

*
(1-¢5)/n = Q/l-+c§ where D = 2——éELl'.




J2 D
We see that c_ ., 1 - J%EQ and éL' ~ 1 +%— _, From (2.42),

5 5 m
= -1 2
~ D 2D »
(1+Q:P__l),ﬁ___"‘___u{—l—+[1+5/_2.:_ ]),
J/n 6 B -62 /M n
-1
; & 1
FR(L-% ) + /2Dy el v 112
Thus
; te) o= 6—1(c)1/]ﬁﬁ2 -‘Jf'bb-l(p:L}Z
ot ARy " el R B(1-6) 3
S
From (2.29) and (2.43),
ng_ (e) -
(2.44) ARE(R,,R_;8) = lim 2 = —oaB
Lk ~20 "R (e) azhz(a )
5 o ~
If we assume that G(x) = x for 0« x<1l , then
B fl-a) . 3les)i3-a)"
(2.45) ARE (R R :6) = - olaetn sro el
¥ 3(1-n) (2-q) +a
ARE(Rl,Rs:é) is a decreasing function of & and for a =%,

it is equal to 0.931.

Note that in (2.45), Rl is based on r-th order statistic and

RS is based on the total life statistic with r - th failure.

(C) Selection procedure for distribution z ordered with respect

to Weibull distribution

Assume that the specified distribution G(x) is given by
{ 1 - g% for x=20

G(x) =
~ 0 for x<O

i |




22.

where ) >0 and attention is restricted to & »>1 which is

assumed known. In this case, we use TI as our statistic where

r-]
=) X* _ + (n-r)x” PAREL: S PP p
g i;j,n i;r,n
J=1
(as before, Xj-j I denote the j-th order statistic from

Fi ., i=1,...,k) . Since G(x) is convex with respect to

the exponential distribution if & »1 and since the convex
ordering is transitive, the family of distributions which are
convex with respect to Weibull (~ »1) will have IFR distribution.
Thus our interest here is in a special subclass of IFR

distributions. The rule for selecting the population which

is associated with Frk] is as follows,
RG: Select population uf if and only if
(2.46) T; > Cp  max T*
lejek I

where c¢. (0« c

6 <1) 1is determined so as to satisfy the basic

6

probability requirement.
Using the fact that if F < G and F(0) =G(0) = 0 then
c

F <G for m~1, where F is the c.d.f. of X, F(x) is the
d ¢ @ (3]

c.d.£f. of X,G is the c.d.f. of Y* and G(y) is the c.d.f. of Y. Also,
n

c le (K} ,) is stochastically equivalent to the i-th order
a (54 ’

X

o * s il S . € ses < X
statistic from G*(x) &= » for x>0, where xl,n n,n

are order statistics from F . 1In a manner similar to the proof




of Theorem 2.1, one can prove the following theorem.

Theorem 2.5. If Fi(x) > F {x) ¥ and 1=],...5K &

[k
_)\xo'
F (0) =0 , F < G G(x) =1-~e s X0, >0 and >1
[x] BRp cidie
. r-1
is known and n >max{r, } , then
1 -c6
@ —
(2.47) inf P(CS|R.1 = [ g1 () aH (x)
9] 0 c6
2

where H(x) is the c.d.f. of a y“ random variable with 2r d.f.

(D) Selection with respect to the means for Gamma populations

Let Tyeeeee Ty be k populations with densities

f.(x)'--“e——‘xl e-ex, o250 EE s e 0 R L R PR (SRR,
i l"(ai) i

T.et Fi(x) be the distribution function of Ty s A ey s
We are given a sample of size n  from cach oo Let ': be
total life statistic until r-th failure from e Let

o 19 < vl ol <“[k] be the ordered values of n;'S - We are

interested in selecting the population with the largest value
(s

. . i ;
(unknown). Since the mean of n, is T , selection of

k)

the population with largest mean is equivalent to selecting
the population with largest value, "'[k] . The subset selection
rule based on Ti is:

R7: Select population un if and only if




(2.48) T; > c7 max T* ,
l<j<k

where c, (0~ c, 1) is the largest value chosen to satisfy

P[CS|R7] -
Since the rule R is scale invariant, we can assume

7
g=1 .

Case 1: All a; are unknown and >1 . Let

Ql = {q@ = (al,...,qk): og.=>1 vyi} . 1In this case, by Corollary

1 3

2.2 and F, < G(x) =1-e ~, %20, i=1,...,k we have %
¢ s

the following result. i
© : :

If n:»max{r,gzl1 , then inf P[CS|R.] = f Hk-l(lﬁ)dﬂ(x) . |
1-C7 a 7 : 0 C7 .

1 |
2 ;
where H(x) is the c.d.f. of a ¥ r.V. with 2r d.E£. 3

Case 2: g are unknown but assume 1 <qi ERA s =R s g ke
and A 1is known.

Let FA(X) be the c.d.f. of X with density function

A1l - x

£f (x) = - X>0
A( ) .

T(A)

2 r.v. with 2r d.f. and let h(x) be

Let H(x) be the c.d.f. of a 4
its density function. The following theorem is the lower bound

for the probability of correct selection without any condition on n

Theorem 2.6.

© k-1,2n _. 2nh(2ny) -x
(2.49) P{CS|R,]> g H (c7 x) £, (y) e  dx ,




'
|
F
k!

where y = le(li—e-x) -
Proof. P[CS|R. ] = P[T* . 2c_ max o O, B
2 L SRS WP SR

where T*.
(i)
X

Since F (x) <F.(x) <G(x) =1-e .
A i

is associated with qt.

£y "

*k > * %
(2.50) P[CS\R7] > P[Tk z c, max Tj ]
l<j<k-1

where Ti* is the total life statistic until r~th failure
from G(x) and T;*(j==1,...,k—l) is the total life statistic

until r-th failure from FA(X) .

1

Since A=21 then F G . Let m(x)==G— Fﬁ(x)

<
8¢
. 1
* % * % - - = -_— % %
(2.51) P[Tk >C7 Tj y diElgeiaas k=11 P[w(n Tk ) =

7
CO(—;- Tg*) j=1’-.o'k_1]

c
By Lemma 4.1 of Barlow and Proschan [57 with a; =...:=ar_1==7%
(n—r+l)c7
a =— ,a, =0 for iz2r+l and ¢(X) =Y where X(Y)
e n 1 st

is a r.v. with distribution function F (G) respectively, we have

(S

C
1 7 . i
(2.52) Plo(y Th*) 20 (5 TE%) j=1l,eea k=17 2PLgp( - THH) >

Ly, , §=1,...,k-1]

2
where Yj (j=1,00¢,k=1) is 8 r.v, with ¥ with 2r d.f.




From (2.50), (2.51) and (2.52), we have

o k-1 : 1
P[CS|R,] > Hk l(é2 x)dB(x) , where B(x) =Pl (T T**; <x]
7¢ c7 n k

1

Since o(x) = —ln(l-Fr(x)) . then m-l(x)==F; (1 _e—x) . Thus

X

B(x) = P[T}* <n o Y(x)] = H(2n o T(x)) = H 2n le(l -e )]

dB(x) _ 2nh(2ny) -x ) -x
Now e = fg(y) e where y = FA (l-e )
Hence v Hk-l(%g x)dB(x) = I Hk-]'(‘f;'r‘l x) 2?h(2? Xax °
b 7 0 7 8

This completes the proof.
Let S denote the size of the selected subset, The

expected value of S when R7 is used is given by

k
(2.53) E(S|R)) =) PLTY »c, max Ti] .

1:1 1<j<k
Let o' = {g = (ml,...,nk): 1 sy <h F=L ciesk} » Por
ettt since F/(x) <Fi(x) <G(x) = 1_-e_x , then

E(S|R,) <k P[T{*>c, max TH*Y
2sj<k

where TI* is the total life statistic until r-th failure
from FA(X) and T;*(j =2,..0.%) 1o the total life statistic
until r-th failure from G(x) . Hence E(S\R7) <

max TH*] . Thus

k P[Ti* >
2<j<k

7

T k-1
(2.54) sgp E(S]R7) = k j H (?) ds (x)
0
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2
where H(x) is the c.d.f. of ¥ r.v. with 2rd.f. and S(x) is the c.d.f.

of the total life statistic until r-th failure from F (X).
A

Remark 2.3. (i) We can show that the lower bound for case 2 in
Theorem 2.6 is less than or equal to the lower bound for case 1.
(ii) Now we are dealing with the problem in case 2. Let

o k-1
” n 7

v

(§L> dH (x) = P* , then C can be determined. If
0 7
n 2 max f{r, (r—l)/(l-c7)l , then we should use the lower bound
for case 1. If r < n < (r—l)/(l-c7) , then the lower bound for

case 1 cannot be applied. 1In this case, we can use the lower

bound for case 2.

(iii) Sonetimes, the distribution function S(x) which

is defined above the remark 2.3 is hard to compute. From

*k *k Bl
E(S|R7) < kE’[Tl = c, Tj 5 2,...,k] where

Tf* is the total life statistic until r-th failure from F_ and

(&)

T;* (j=2,...,k) 1is the total life statistic until r-th failure
from G(x) . Using the similar arguments in the proof of

Theorem 2.6, we can get -

E(S|R,) = k %“’ " e [_CZ_;_A le (1-e 2“):\ d H(x)

where H(x) is the c¢.d.f. of a XZ r.v. with 2r d.f.

In this case, the upper bound of E(S|R7) can be computed.
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3. Selecting a best population - using indifference zone approach.

Let = be k populations. The random variable

l,.-o’ﬂk

Xi associated with u has an absolutely continuous

distribution Fi . We assume there exists a Ftk](x) such
X :

[i}( [k](b) for all x , 1=1,...,k=-1 and

§ (0< 8 <1) is specified. Let

that F x) >F

(3.1) Q(8) ={(E=(F ,...,F): g aj such that F,(x) >Fj(f0v i#3) .

k

The correct selection is the choice of any population which

is associated with F We propose the selection rule

[y °
!h : Select population n. if and only if

(3.2) T. = max T. where Ti is defined as in Section 1.2
l<j<k

We want the P[CS\RSJ >P* , for all F ¢Q , where

pP* (%<:P*< 1) is specified.

Theorem 3.1. IfE1€3,G€mi=1“.”k,

- ¥ -1
F « G , Gl(0)<0, a, 20 5 gElisas,t 0 96 (0) ¢l
tk] ¢ ]

and a =8 , then
r

(3.3) P CS|R,] > [ gk~ (X
0

T (z)dGT(X)




where GT(x) is the c.d.f. of T .

Proof. P[CS|Ry] = PET(k):zlmétk T5)7 -
<]

(8x) > F[k](X) , i=1,...,k-1 and by

Since

Frig

Lemma 2.1, then
] b
P[CS\R81=P[T(k) > 8 —u)_a v j#k] » PtT(k) > 'r; Y j #Xk]

o . T ;
where Tl""'Tk—l : T(k) are i.i.d. with c.d.f. wk(x) .

Using the same argument as in Theorem 2.1, we have our theorem.

[--]
Remark 3.1. inf P[CS|Rgl= [ G
a(s) 0

k-1

= (i‘-)dGT(x) if G'1(0)=0 ;

For given k, 8, P* and G(x) , we can possibly find the

values of the pair (n,r) , (n=r) which satisfy

= k-1 ,x
(3.4) ar'>° and g_l G ( )dGT(x) > P* |

T 8
(0)
If G(x) = x for O<x<1l , we can always find the
values of the pair (n,r) , (n:>r) which satisfy

k-1

n-1 © n " - i x n-i -1
([ L OR8] e
5
r-1 y
0 i=r
J
If G(x) = 1-e X for x>0 , we can find the smallest

integer r , say r, . which satisfies




rw Hk-l(f)dH(X) >P* where H(x) is the c.d.f. of a Y2
Y 0 .
random variable with 2r d.f. Since % ar_>1 4fF n:?f:% N

we can find the minimum n satisfying n;—max[r.i-:} .

4. Selection procedure for distribution < ordered with respect to G

*

Let t(>0) be a given number. Let Ni(t) be the
number cof failures in time t of the total n units on life test
(without replacement) from " which has a continuous distribution

Fi , 1=1,...,k . We assume that

(401) Nl(t)(\l ’ i:‘l'o..'k ’

and there exists a F[k}(x) such that Fi(x) >Ftkj(x) for

all x, i=1,...,k . The correct selection is the choice

of any population which is associated with F . Let Ti

tk]

be the total life statistic unitl Ni(t)-th failure from

population o et 1, be associated with F,.. . We

(i) £ijd

propose the rule

(4.2) Rgz Select Ty - Ti >C 12?2k 108

9

where c9(0<c9 <1) is chosen so that P[CS\jo >P*

Theorem 4.1. If F,(x) zF (%) v x, i=1,...,k and

(k]

F < G then
£kl «

|

|
i

{
|
|




(4.3) P[CS|R9j gA (—)dA (x)

where Al(x)(Az(x)) is the c.d.f. of total life statistic until
n-th (first) failure from G , respectively.

Proof. From ( 4.1), we have

= * * 1 = =3
P[CS[RQJ P(T (x) > ¢y max T( )] >P[T >c9'rJ for 3=1,...,k~1)
T*
where _i is the sample mean of size n from Fti] o 1= 01,000k~
s
and :; is the first order statistic of size n from F[k] "
Let
n
(4.4) % =\ X  for j=1,...,k-1 .
1 oam W
h X. e e e o ...a o ) = s oo e .
where j1° 'x]n are i.i.d. from F[k] s = L, k-1
since F,_, .. (x) >F (x) then T** > T* , Hence
i (k] p S
* * 1 . * * % 3
(4.5) PtTk>c9Tj i JEKT » P["I'k>c9Tj . JEK] .
Let Bix) =@ P in) .
[k]
: Ti 1
* * % 3 - — = * % 3
(4.6) P[Tk><-'9'1‘j . J#K] P[co(ncg) 2rn(n Tj ), 3 #k]
Since ¢ 1is starshaped, then
T* T*
1 k
(4.7) oides By 3 S plly
9 9

By Lemma 3.1 of Barlow and Proschan [57,




1 I
(4.8) o (5 Th*) <}: <X, ) .
. &1 n j2
'r*
Note that k) = ¥ where Y is the first order statistic
n: gk K k

of size n from G and m(le) has distribution G ,

n
.5

1 = - = Y = ) (X. ) .=1,..;,k-l -
J"ll.--nklp 1. 1.....n. Let j":__chp JL ’ 5

From (4.7) and (4.8), the right-hand side of (4.6) is greater

than or equal to

j=l'-o.'k-l]=

S =
%
-

1
Pl ¥
k
“g

1 ;
b4 = Lgisieis slc—iL
PCS (nYk) = ¥, j ]

9
e [
= [ A (=)da_ (x) .
6 1 c9 2

This completes the proof.
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i=1,...,k where xi-j . is the j-th order statistic from Fi’ r is a fixed
positive fnteger (1 <r<n), a; = g6~ (3 - g67 (d) for j=1,...,r1

a, = gG'](Iil) and g is the density of G. This statistic T1 was considered

by Barlow and Doksum (1972). If G(x) =1 - e * for x > 0, then nT1 R T

oot Xypoy g ¥ (Rert1)X, o is the total life statistic until r-th failure
’ ] b ’

from Fi‘ This shows that the procedure based on T1 generalizes Patel's result

(1976) for the IFR vamily.

The infimum of the probability of a correct selection is obtained and the
asymptotic expression is also obtained using the subset selection approach.
Some other properties of this procedure are discussed. We also study the
asymptotic relative efficiencies of this rule with respect to some selection
procedures proposed by Barlow and Gupta (1969) for the star-shaped ordered
distributions, Gupta (1963) for the gamma populations with unknown shape
parameters and etc. An example is given to illustrate the use of the selection
procedure for the two independent uniform distributions. Application to
quantile selection rules for distributions convex ordered with respect to
Weibull distribution is given. A selection procedure for selecting the best
population using the indifference zone approach is also studied.
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